Formulation Chemistry
Have you ever been curious about the chemistry in the products you use everyday? How is it that you can smell a shampoo fragrance hours after cleaning your hair? What is the purpose of the long list of ingredients printed on your favorite drink or snack? How can you control the release of new therapeutic drugs in human bodies? If so, this program on formulation chemistry is made for you. In this class, we answer these questions and more. We first examine the main concepts on formulation chemistry (emulsion preparation, system stability, encapsulation techniques, characterization methods) before studying concrete applications in food, paints & coatings, cosmetics or pharmaceutical industries. The research project will then consist of an extensive literature review on a specific scientific challenge at the intersection of Formulation Chemistry and Material Science. The course taps into our instructors’ research on chemistry at the University of Cambridge and at leading pharma companies like Sanofi.
Pre-Approved Applications and Topics
1. Food industry (e.g. Preparation of fat-free products with preserved textural properties)
2. Cosmetics (e.g. Preparation of shampoos with sustained release of active principles)
3. Plastics (e.g. Comparison of Plant-based vs oil-based materials)
4. Paints & Coatings (e.g. Preparation of non-toxic paintings with enhanced drying and resistance properties)
5. Pharmaceutical industry (e.g. Targeted drug delivery systems for controlled release of therapeutic compounds)
6. Agriculture (e.g. Controlled release of herbicides on crops)
7. Environmental applications (e.g. Composite materials for water pollutant removal)
8. Buildings and roads (e.g. Development of self-healing concrete)
9. Engine oil formulations (e.g. extending engine lifetimes and reducing CO2 emissions)
10. Nanoparticles (e.g. imbuing formulations with countless properties, ie. conductivity, magnetism, catalysis and more)
Topics in Analytical Chemistry
The ways by which scientists elucidate the world around us rely on a complex but fascinating array of instrumental techniques and methodologies. Analytical chemistry stands at the cutting edge of scientific discovery, and this course will shine light (literally) on the many techniques that scientists use to solve and understand real-world problems. If you’re interested in the ways by which blood samples are analyzed, pollutants in the atmosphere are detected or how food and cosmetics pass the strict measures for quality control, then analytical chemistry is a key topic in your development as a scientist or entrepreneur. In your one-on-one lessons, you will be guided through the foundational theory that underpins the core techniques of analytical chemistry, and learn how to interpret actual data generated from real chemical systems. You will then apply these knowledge and skills as you explore a unique, scientific problem of your choosing, and produce a comprehensive literature review on the topic.
1. Atomic and molecular spectroscopy involves using light (of varying properties) to identify and quantify chemical species. Therefore, spectroscopy can be implemented for an enormous host of applications such as impurity or contaminant detection in food and pharmaceuticals, measuring amounts of toxins and pollutants in the environment and atmosphere, analyzing the properties of objects in astronomy, or increasing agricultural production.
2. Microscopy techniques are exploited when important phenomena are occurring far beyond the resolution of our eyes. From analyzing blood and tissue samples, to crime scene evidence, and then as far down as nanomaterials and single atoms, we gain insight into a myriad of systems through the art and ingenuity of microscopy.
3. Diffraction and scattering techniques allow us to use various forms of radiation such as light X-rays and neutrons to determine the size, shape and properties of particles and materials. If you want to characterize nanoparticles, elucidate crystal structures with sub-nanometer resolution or analyze protein deformation over time, scattering and diffraction techniques may hold the key.
4. Separations techniques allow scientists to purify and isolate single components from complex chemical mixtures. This may be for the purification of a new drug, to separate minerals from ore deposits or to remove pollutants from industrial effluent. Therefore, optimizing and innovating separations techniques is vital for economic and ecological benefits.
Topics in Physical Chemistry
Physical chemistry addresses the fundamental basis for the countless physicochemical phenomena exhibited by chemical systems. The mechanisms that underpin cloud formation, why water beads up on your living room window and how oil and water can be made to mix using emulsifiers, can all be explained within the grounds of physical chemistry. These lessons will rationalize the physical basis for these processes by describing and understanding the many interactions that take place between chemical species. Throughout the lessons, different chemical systems from particle dispersions to foamy fluids will be considered to aid in conceptualizing the complex interplay of forces involved in stabilizing these systems. This course is recommended for students that would like a challenge and are interested in consolidating their understanding of chemical systems with the relevant mathematical background. The mentor will also aid the student in conducting an extensive literature review on a related topic that the student desires to investigate.
1. Chemical thermodynamics concerns the transfer of energy between chemical species and justifies when a reaction (or interaction) is favored to occur.
2. Chemical kinetics concerns the timeframes of physicochemical phenomena and reactions.
3. Interfaces are represented as the surface or boundary between two distinct phase regimes (ie. solid and liquid, oil and water, water and air). How does chemistry change at interfaces and how do these processes influence the world we experience?
4. Chemical interactions dictate the overall behavior and reactivity of chemical systems. Understanding these complex interparticle forces is key in controlling system stability.
5. Surfactants or ‘detergents’ are a widely used class of molecules that are commonly found in cosmetic and cleaning formulations. Why are these molecules so good at their job? What chemistry underpins the way they behave in solutions and at interfaces?
6. Emulsions are formed when you achieve mixing of two liquids that would not normally mix (what?). Common examples include milk, mayonnaise and ice cream, and their formation and stability is owed to a unique array of interactions and processes.
7. Foams and aerosols are the gas/liquid opposites of each other, and both find countless uses and manifestations in industry and nature. How is it that gas molecules can be trapped in a liquid and how is it that aerosol droplets can appear out of thin air?
8. Liquid crystals are molecular assemblies that have the ordered structure of a crystal, but also the fluid/deformable properties of a liquid. Why and how do these unique structures emerge? What can they be used for?